e-ISSN: 2617-0396     print ISSN: 2617-0388
Investıgatıon of selectıve permeabılıty of lıpıd membranes for ıons and organıc compounds under the actıon of membrane-actıve preparatıon
##common.pageHeaderLogo.altText## Scientific News of Academy of Physical Education and Sport

Abstract

Under the action of amphotericin B, mycoheptin and levorin molecules, their ability to form channels in lipid membranes and to transport various ions and organic compounds through the membranes is shown. In the presence of polyenes, it is shown that it is possible to transport through membranes ions of potassium, sodium, calcium, as well as carbohydrates in the following series of their permeability: ribose, arabinose, glucose and sucrose.

References

Касумов Х.М. Структура и мембранная функция полиеновых макролидных антибиотиков. Монография, Москва «Наука», 2009,с. 1-512.

Sanglard D., Coste A., Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. //FEMS Yeast Res., 2009, 9 (7), p.1029-1050.

Samedova A.A., Tagi-zade T.P., Kasumov Kh.M. Dependence of ion channel properties formed by polyene antibiotics molecules on the lactone ring structure. Russian Journal of Bioorganic Chemistry, 2018, Vol. 44, No. 3, pp. 337–345.

Shahmoradi T., Ashrafpour M., Sepehri H. 2016. Electrophysiological characteristics of cationic single-channel formed by incorporation of amphotericin b in bilayer lipid membrane. Journal of Babol University of Medical Sciences, v. 18 (2). p. 26-31.

Mouri, R., Konoki K., Matsumori N., Oishi T., MurataM. Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance // Biochemistry, 2008, v. 47, pp. 7807–7815.

Cohen B.E. The role of signaling via aqueous pore formation in resistance responses to amphotericin B // Antimicrob. Agents Chemother. 2016, v. 60(9), pp. 5122–5129.

P. Dimethyl sulphoxide: a review of its applications in cell biology. Bioscience Reports, 1994, v.14, p.259 - 281.

Tzu-SenYang, Keng-Liang Ou, Pei-Wen Peng, Bing-Chun Liou, Wei-TingWang, Yuan-Chen Huang, Chung-Min Tsai.Quantifying membrane permeability of amphotericin B ion channels in single living cells // Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1828, Issue 8, 2013, pp. 1794-1801.

Neumann A., Baginski M., Czub J. How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets // J. Am. Chem. Soc., 2010, v. 132, pp. 18266-18272.

Yu Z., Quinn P. The modulation of membrane structure and stability by dimethyl sulphoxide (Review) Molecular Membrane Biology, 1998, v.15, p.59 - 68.

Yu Z., Quinn P. Solvation on effects of dimethyl sulphoxide on the structure of phospholipid bilayers. Biophysical Chemistry, 1998, v.70, p.35 - 39.

Coutinho A., Prieto M. Self-association of the polyene antibiotic nystatin in dipalmitoylphosphatidylcholine vesicles: a time-resolved fluorescence study. Biophysical Journal, 1995 v. 69, p. 2541- 2557.

Efimova S.S., Schagina L.V., Ostroumova O.S. Investigation of channel-forming activity of polyene macrolide antibiotics in planar lipid bilayers in the presence of dipole modifiers // Acta Naturae, 2014, v. 6(4), pp. 67–79.

Gaboriau F., Cheron M., Petit C., Bolard J. Heat-induced superaggregation of amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index. Antimicrobial Agents and Chemotherapy, 1997, p. 2345 - 2351.

Gaboriau F., Cheron.M, Leroy L., Bolard J. Physico-chemical properties of the heat-induced superaggregaties of amphotericin B. Biophysical Chemistry, 1997, v. 66, p.1 - 12.

Cybulska B., Bolard J.,Seksek O.,Czerwinski A.,Borowski E. Identification of the structural elements of amphotericin B and othr polyene macrolide antibiotics of the heptaene group influencing the ionic selectivity of the permeability pathways formed in the red cell membrane. Biochim. Biophys. Acta, 1995, v. 1240, p. 167 – 178.

Blanc I., Bueno Da Costa M., Bolard J., Saint-Pierre Charalet M. Oligonucleotide delivery by a cationic derivative of the polyene antibiotic amphotericin B. I: Interaction oligonucleotide vector as studed by optic spectroscopy and electron microscopy. Biochim. Biophys. Acta, 2000, v. 1464 (2), p. 299 - 308.

Garcia-Chaumont C., Seksek O., Jolles B., Bolard J. A cationic derivative of amphotericin B as a novel delivery system for antisense oligonucleotides. Antisense Nucleic Acid Drag Dev., 2000, v. 10 (3). p. 177 - 184.

Anderson T.M., Clay M.C., Cioffi A.G., Diaz K.A., Hisao G.S., Tuttle M.D., Nieuwkoop A.J., Comellas G., Maryum N., Wang S., Uno B.E., Wildeman E.L, Gonen T., Rienstra C.M., Burke M.D. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol., v. 10(5), p. 400–406.

PDF (Azərbaycanca)
PDF (Azərbaycanca)

Keywords

Polyene antibiotics
lipid membranes
ion
organic compounds
selective transport Полиеновые антибиотики
липидные мембраны
ионы
органические соединения
избирательная проницаемость Polien antibiotiklər
lipid membranları
ionlar
üzvi birləşmələr
seçici keçiricilik